US009231764B2

a2 United States Patent

Gupta

US 9,231,764 B2
*Jan. 5, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(60)

(1)

(52)

(58)

METHODS AND SYSTEMS OF DATA
SECURITY IN BROWSER STORAGE

Applicant: salesforce.com, inc., San Francisco, CA
us)

Inventor: Akhilesh Gupta, San Francisco, CA

us)

salesforce.com, inc., San Francisco, CA
us)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/622,812

Filed: Feb. 13, 2015

Prior Publication Data

US 2015/0163061 Al Jun. 11, 2015

Related U.S. Application Data

Continuation of application No. 13/433,067, filed on
Mar. 28, 2012, now Pat. No. 8,959,347.

Provisional application No. 61/528,462, filed on Aug.
29, 2011.

Int. Cl1.

HO4L 29/06 (2006.01)

HO4L 9/32 (2006.01)

U.S. CL

CPC ... HO4L 9/3213 (2013.01); HO4L 63/0807

(2013.01); HO4L 63/0428 (2013.01)
Field of Classification Search
CPC HOAL 9/3213; HO4L 63/0807; HO4L
63/0428; HO4L 9/32
See application file for complete search history.

Initiste Authentication

WebApp
{App
Provider)

(56) References Cited
U.S. PATENT DOCUMENTS
5,577,188 A 11/1996 Zhu
5,608,872 A 3/1997 Schwartz et al.
5,649,104 A 7/1997 Carleton et al.
5,715,450 A 2/1998 Ambrose et al.
5,761,419 A 6/1998 Schwartz et al.
5,819,038 A 10/1998 Carleton et al.
5,821,937 A 10/1998 Tonelli et al.
5,831,610 A 11/1998 Tonelli et al.
5,873,096 A 2/1999 Limet al.
5,918,159 A 6/1999 Fomukong et al.
5,963,953 A 10/1999 Cram et al.
6,092,083 A 7/2000 Brodersen et al.
(Continued)
FOREIGN PATENT DOCUMENTS
WO WO0/2012/048092 A2 4/2012
WO WO0/2012/054309 Al 4/2012
OTHER PUBLICATIONS

Non-final Office Action for U.S. Appl. No. 13/433,067, mailed Nov.
26, 2013, 9 pages.
(Continued)

Primary Examiner — Izunna Okeke
(74) Attorney, Agent, or Firm — Blakely, Sokoloff, Taylor &
Zafman

57 ABSTRACT

Mechanisms and methods are provided for managing OAuth
access in a database network system, and extending the
OAuth flow of authentication to securely store the OAuth
encrypted refresh token in the storage available with current
browsers or any other non-secure storage on user system.

16 Claims, 16 Drawing Sheets

Redirect to date source Oauth login

31

Lagin and Apprave

Standard

OAuth Access Chuth

Redirect user 1 webapp

Post Auth code + User passcods
to okiain reiresh token

218

with Auth code

Exchange Auth code for
Accass and Refresh token

318
Return JSON response with encrypted
{refresh token + passcode}

Standard
QOAuth +
Passcade
flowve

Resurn Aucess and Refresh token

Set session cookies with osuth values
for subsequent requests
Store the encrypted token in
L Iocal browssr DB for future use

324

822

US 9,231,764 B2

Page 2
(56) References Cited 8,484,111 B2 7/2013 Frankland et al.
2001/0044791 Al 11/2001 Richter et al.
U.S. PATENT DOCUMENTS 2002/0022986 Al 2/2002 Coker et al.
2002/0029161 Al 3/2002 Brodersen et al.
6.161.149 A 12/2000 Achacoso et al. 2002/0029376 Al 3/2002 Ambrose et al.
6:169:534 Bl 1/2001 Raffel et al. 2002/0035577 Al 3/2002 Brodersen et al.
6,178,425 B1 1/2001 Brodersen et al. 2002/0042264 Al 4/2002 Kim
6,189,011 Bl 2/2001 Lim et al. 2002/0042843 Al 4/2002 Diec
6,216,135 Bl 4/2001 Brodersen et al. 2002/0072951 Al 6/2002 Lee et al.
6.233.617 Bl 5/2001 Rothwein et al. 2002/0082892 Al 6/2002 Raftel et al.
6:266’669 Bl 7/2001 Brodersen et al. 2002/0129352 Al 9/2002 Brodersen et al.
6295’530 Bl 9/2001 Ritchie et al. 2002/0140731 Al 10/2002 Subramaniam et al.
6324568 Bl 11/2001 Diec 2002/0143997 Al 10/2002 Huang et al.
6.324.693 Bl 11/2001 Brodersen et al. 2002/0152102 Al 10/2002 Brodersen et al.
6336.137 Bl 1/2002 Lee et al. 2002/0161734 A1 10/2002 Stauber et al.
D454.139 S 3/2002 Feldeamp 2002/0162090 A1 10/2002 Parnell et al.
6,367,077 Bl 4/2002 Brodersen et al. 2002/0165742 Al 11/2002 Robins
6.393.605 Bl 5/2002 Loomans 2003/0004971 Al 1/2003 Gong et al.
6.405.220 Bl 6/2002 Brodersen et al. 2003/0018705 A1 1/2003 Chen et al.
6434550 Bl /2002 Warner et al. 2003/0018830 Al 1/2003 Chen et al.
6,446,080 Bl 9/2002 Brodersen et al. 2003/0066031 Al 4/2003 Laane
6.535.909 Bl 3/2003 Rust 2003/0066032 Al 4/2003 Ramachandran et al.
6.549.008 Bl 4/2003 Loomans 2003/0069936 Al 4/2003 Warner et al.
6.553.563 B2 4/2003 Ambrose et al. 2003/0070000 Al 4/2003 Coker et al.
6,560,461 BL 5/2003 Fomukong et al. 2003/0070004 Al 4/2003 Mukundan et al.
6.574.635 B2 6/2003 Stauber et al. 2003/0070005 Al 4/2003 Mukundan et al.
6.577.726 Bl 6/2003 Huang etal. 2003/0074418 Al 4/2003 Coker
6.601.087 Bl 7/2003 Zhu et al. 2003/0088545 Al 5/2003 Subramaniam et al.
6.604.117 B2 82003 Lim et al. 2003/0120675 Al 6/2003 Stauber et al.
6.604.128 B2 82003 Dicc 2003/0151633 Al 8/2003 George et al.
6.609.150 B2 82003 Lee ot al. 2003/0159136 A1 8/2003 Huang et al.
6,621,834 Bl 9/2003 Scherpbier et al. 2003/0187921 Al 10/2003 Diec
6,654,032 Bl 11/2003 Zhu et al. 2003/0189600 Al 10/2003 Gune et al.
6.665.648 B2 12/2003 Brodersen et al. 2003/0191743 Al 10/2003 Brodersen et al.
6.665.655 Bl 12/2003 Warner ot al. 2003/0204427 Al 10/2003 Gune et al.
6.684438 B2 2/2004 Brodersen et al. 2003/0206192 A1 11/2003 Chen et al.
6711565 Bl 3/2004 Subramaniam of al. 2003/0225730 Al 12/2003 Warner et al.
6724399 Bl 4/2004 Katchour et al, 2004/0001092 A1 1/2004 Rothwein et al.
6,728,702 Bl 4/2004 Subramaniam et al. 2004/0010489 Al 1/2004 Rio
6,728,960 Bl 4/2004 T.oomans 2004/0015981 Al 1/2004 Coker et al.
6,732,095 Bl 5/2004 Warshavsky et al. 2004/0027388 Al 22004 Bergetal.
6,732,100 Bl 5/2004 Brodersen et al. 2004/0128001 Al 7/2004 Levin et al.
6,732,111 B2 5/2004 Brodersen et al. 2004/0168083 Al 8/2004 Gasparini GOG6F 21/31
6,754,681 B2 6/2004 Brodersen et al. 726/10
6.763.351 Bl 7/2004 Subramaniam et al. 2004/0186860 Al 9/2004 Leeetal.
6.763.501 Bl 7/2004 Zhu et al. 2004/0193510 A1 9/2004 Catahan, Jr. et al.
6.768.904 B2 72004 Kim 2004/0199489 Al 10/2004 Barnes-Leon et al.
6.772.220 Bl 8/2004 Achacoso et al. 2004/0199536 A1 10/2004 Barnes Leon et al.
6782383 B2 8/2004 Subramaniam et al. 2004/0199543 Al 10/2004 Braud et al.
6.804330 Bl 10/2004 Jones of al. 2004/0249854 Al 12/2004 Barnes-Leon et al.
6.826.565 B2 11/2004 Ritchic cf al. 2004/0260534 Al 12/2004 Paket al.
6,826,582 Bl 11/2004 Chatterjee et al. 2004/0260659 Al 12/2004 Chan et al.
6.826.745 B2 11/2004 Coker et al. 2004/0268299 Al 12/2004 Lei et al.
6.829.655 Bl 122004 Huang etal. 2005/0050555 Al 3/2005 Exley et al.
6.842.748 Bl 1/2005 Warner et al. 2005/0091098 Al 4/2005 Brodersen et al.
6.850.805 B2 2/2005 Brodersen et al. 2009/0024609 Al 1/2009 Barker et al.
6,850,949 B2 2/2005 Warner et al. 2009/0044020 Al 2/2009 Laidlaw HO04L 63/08
7,289,976 B2 10/2007 Kihneman et al. 713/176
7340411 B2 3/2008 Cook 2009/0049053 Al 2/2009 Barker et al.
7356482 B2 4/2008 Frankland et al. 2009/0177744 Al 7/2009 Marlow et al.
7:590:685 B2 9/2009 Palmeri et al. 2010/0017596 Al 1/2010 Schertzinger GO6F 21/33
7,620,655 B2 11/2009 Larsson et al. 713/155
7,991,790 B2 8/2011 Barker 2010/0088636 Al 4/2010 Yerkes et al.
8,015495 B2 9/2011 Achacoso et al. 2010/0205243 Al 82010 Brady
8,078,620 B2 12/2011 Dayon 2010/0223467 Al 9/2010 Dismore et al.
8,078,621 B2 12/2011 Dayon 2010/0250565 Al 9/2010 Tobin et al.
8,082,249 B2 12/2011 Dayon 2010/0281039 Al 11/2010 Dayon
8,082,250 B2 12/2011 Dayon 2010/0287503 Al 112010 Dayon
8,082,251 B2 12/2011 Dayon 2011/0137940 Al 6/2011 Gradin et al.
8,082,252 B2 12/2011 Dayon 2011/0197186 Al 8/2011 Barker et al.
8,082,253 B2 12/2011 Dayon 2011/0214064 Al 9/2011 Schneider et al.
8,082,254 B2 12/2011 Dayon 2011/0225119 Al 9/2011 Wong et al.
8,131,821 B2 3/2012 Dayon 2011/0225232 Al 9/2011 Casalaina et al.
8,230,062 B2 7/2012 Newton 2011/0225233 Al 9/2011 Casalaina et al.
8,301,612 B2 10/2012 Barker et al. 2011/0225495 Al 9/2011 Casalaina et al.
8,312,047 B2 11/2012 Barker et al. 2011/0225500 Al 9/2011 Casalaina et al.
8,407,338 B2 3/2013 Brady 2011/0225506 Al 9/2011 Casalaina et al.
8,412,820 B2 4/2013 Newton 2011/0225525 Al 9/2011 Chasman et al.
8,443,085 B2 5/2013 Jensen-Horne et al. 2011/0231919 Al 9/2011 Vangpat et al.

US 9,231,764 B2

Page 3

(56) References Cited 2012/0144340 Al 6/2012 Knight

2012/0144501 Al 6/2012 Vangpat et al.

U.S. PATENT DOCUMENTS 2012/0173485 Al 7/2012 Kothule et al.

2012/0197916 Al 82012 Tobin et al.
2011/0238622 Al 9/2011 Walters et al. 2012/0198279 Al 82012 Schroeder
2011/0246520 Al 10/2011 Koister et al. 2012/0209947 Al 8/2012 Glaser et al.
2011/0246772 Al 10/2011 O’Connor et al. 2012/0214597 Al 82012 Newman et al.
2011/0247051 Al 10/2011 Bulumulla et al. 2012/0214598 Al 82012 Newman et al.
2011/0252314 Al 10/2011 Barker et al. 2012/0215705 Al 8/2012 Porro et al.
2011/0258225 Al 10/2011 Taylor et al. 2012/0215706 Al 8/2012 Porro et al.
2011/0258242 Al 10/2011 Eidson et al. 2012/0215707 Al 82012 Kwong et al.
2011/0258628 Al 10/2011 Devadhar 2012/0216130 Al 8/2012 Porro et al.
2011/0264650 Al 10/2011 Tobin et al. 2012/0223951 Al 9/2012 Dunn et al.
2011/0265066 Al 10/2011 Fee et al. 2012/0233191 Al 9/2012 Ramanujam
2011/0274258 Al 11/2011 Casalaina et al. 2012/0253885 Al 10/2012 Newton
2011/0274261 Al 11/2011 Casalaina et al. 2012/0259894 Al 10/2012 Varley et al.
2011/0276580 Al 112011 Press ef al. 2012/0266229 Al* 10/2012 Simone GO6F 21/41
2011/0276674 Al 11/2011 Jensen-Horne et al. 726/9
2011/0276693 Al 11/2011 Jensen-Horne et al. 2012/0317238 Al 12/2012 Beard
2011/0276890 Al 11/2011 Jensen-Horne et al. 2012/0330710 Al 12/2012 Hauser et al.
2011/0276892 Al 11/2011 Jensen-Horne et al. 2012/0331016 Al 12/2012 Janson et al.
2011/0276945 Al 11/2011 Chasman et al. 2012/0331053 Al 12/2012 Dunn
2011/0276946 Al 11/2011 Pletter 2012/0331518 Al 122012 Lee
2011/0282908 Al 112011 Flyetal. 2012/0331536 Al 12/2012 Chabbewal et al.
2011/0283110 Al 11/2011 Dapkus etal. 2013/0002676 Al 1/2013 Ziemann
2011/0283181 Al 11/2011 Waite et al. 2013/0007029 Al 1/2013 Ziemann
2011/0283267 Al 11/2011 Waite et al. 2013/0007049 Al 1/2013 Ziemann
2011/0283356 Al 11/2011 Flyetal. 2013/0007126 Al 1/2013 Ziemann
2011/0289140 Al 11/2011 Pletter et al. 2013/0007148 Al 1/2013 Olsen
2011/0289425 Al 11/2011 Pletter et al. 2013/0018955 Al 1/2013 Thaxton et al.
2011/0289476 Al 11/2011 Pletter et al. 2013/0019106 Al 1/2013 Fischer
2011/0289479 Al 11/2011 Pletter et al. 2013/0019235 Al 1/2013 Tamm
2011/0289509 Al 11/2011 Kothari et al. 2013/0021370 Al 1/2013 Dunn et al.
2011/0296336 Al 12/2011 Law etal. 2013/0024454 Al 1/2013 Dunn
2011/0296375 Al 12/2011 Mooney 2013/0024511 Al 1/2013 Dunn et al.
2011/0296381 Al 12/2011 Mooney 2013/0024788 Al 1/2013 Olsen et al.
2011/0302221 Al 12/2011 Tobin ét al. 2013/0024843 Al 1/2013 Kutlu
2011/0302277 Al 12/2011 Baker 2013/0024910 Al 1/2013 Verma et al.
2011/0302631 Al 12/2011 Sureshchandra et al. 2013/0031144 Al 12013 Elango et al.
2011/0307695 Al 12/2011 Slater 2013/0031172 Al 1/2013 Olsen et al.
2011/0320879 Al 12/2011 Singh etal. 2013/0031487 Al 1/2013 Olsen et al.
2012/0005537 Al 12012 Chen ef al. 2013/0036142 Al 2/2013 Barker et al.
2012/0042218 Al 2/2012 Cinarkaya et al. 2013/0054517 Al 22013 Beechuk et al.
2012/0054210 Al 3/2012 Dayon 2013/0054714 Al 2/2013 Bedi
2012/0054629 Al 3/2012 Dayon 2013/0054968 Al 2/2013 Gupta
2012/0059919 Al 3/2012 Glaser et al. 2013/0055113 Al 2/2013 Chazin et al.
2012/0066672 Al 3/2012 Smith et al. 2013/0060859 Al 3/2013 Olsen et al.
3012/0078917 AL 3/2012 Gradin et al. 2013/0061156 Al 3/2013 Olsen et al.
2012/0078981 Al 3/2012 Gradin et al. 2013/0086670 Al 4/2013 Vangpat et al.
2012/0079004 Al 3/2012 Herman 2013/0091149 Al 4/2013 Dunn et al.
2012/0079038 Al 3/2012 Hersh 2013/0091171 Al 4/2013 Lee
2012/0079392 Al 3/2012 Dayon 2013/0091217 Al 4/2013 Schneider
2012/0086544 Al 4/2012 Kemp 2013/0091229 Al 4/2013 Dunn et al.
2012/0089610 Al 4/2012 Agrawal etal. 2013/0097253 Al 4/2013 Mencke
2012/0096046 Al 4/2012 Kucera 2013/0103701 Al 4/2013 Vishnubhatta et al.
2012/0096049 Al 4/2012 Reinke 2013/0117353 Al 5/2013 Wong et al.
2012/0101985 Al 4/2012 Kemp etal. 2013/0132861 Al 5/2013 Kienzle et al.
2012/0102063 Al 4/2012 Kemp et al. 2013/0132870 Al 5/2013 Vishnubhatta et al.
2012/0102114 Al 4/2012 Dunn et al. 2013/0145445 Al 6/2013 Lee
2012/0102153 Al 4/2012 Kempetal.
2012/0102402 Al 4/2012 Kwong OTHER PUBLICATIONS
2012/0102420 Al 4/2012 Fukahori
2012/0102429 Al 4/2012 Naderi et al. Non-final Office Action for U.S. Appl. No. 13/433,067, mailed May
2012/0130973 Al 5/2012 Tamm et al. 16, 2014, 10 pages
2012/0140923 Al 6/2012 Leeet al. e) .
2012/0143817 Al 6/2012 Prabaker ot al. Notice of Allowance for U.S. Appl. No. 13/433,067, mailed Oct. 2,
2012/0143917 Al 6/2012 Prabaker et al. 2014, 7 pages.

2012/0144023 Al 6/2012 Guest et al. . .
2012/0144024 Al 6/2012 Lee * cited by examiner

US 9,231,764 B2

Sheet 1 of 16

Jan. 5§, 2016

U.S. Patent

\\\\\.\ osugElRg]
ide SO
\\\\\ UGTIRSAT UONG
il
JIEMOS
et HIRV
. o RETREIN
(44 RIBCE A9 PR
Gkl
004

L O

act

get

SUSNO |
Suieunpy sBeINg
M puw Bupoig ST NI) S
IOJ OPOTy 97
QOB LI
FECTSRN I
ol
IO | T
&l
Y aoBjIony aoAdp |
JIOMION] by [
G
ODIAS(T HIS(Y [
8ii
suonRaddy e
e)
8t
GOTTETY A
HOHdLInor] P
(fl)l/..
151078
JOAIOS IOPIADL |
monedpddy /
oL

US 9,231,764 B2

Sheet 2 of 16

Jan. 5, 2016

U.S. Patent

uoNo} pedAious 201

%

AR BIEP JOEA0IY U
pordAasus 83035 pue s1ssnbas
1snbosgns J07 SONTEA YINYO

QA SEPN0O0 HOISESS 195

¥

apovssRd B0 POSEG BONO)
gsarpal pod AIous oasaney

&

V& Ol

0 YEBIDI DUE 5E3008
DGO 01 opoossed osn pur
SPOG SENSE YILY Y PUdY

B

gLg

g3 01 Josn Funamipol
aepiaouad noneoydds wwmuon
0] BOTOTLING] PUB 00108 ¥ED

WOLT BPO3 SS00I8 PN 31003

&

Wiy o eatudde pue

UOUBULIONY BIAO] PUSE P

&

A1 91 105t unosapad opanid
uonesdds wol oomos wEp
3o o8ed wHo] PRV 0AT00TY

&

uongonEsng funenn
rspracsd woneondde o
15enbor EONEOILOYING PHOG

US 9,231,764 B2

Sheet 3 of 16

{spoossed
+ uayo) geayad) peydArous
i Qsuodsoy NOST DURY

Jan. 5, 2016

E-N

233008 BIR{] Wit} UDYO]
YSOIOF DU S8O00E 318007

]

U.S. Patent

&

g Oid

SOUNOS BIR(T OS]
OO} YSOII0T PUB SSO00R
wmeige o opoossed 1051 pue
ST $S2000 YNV PUOS

&

QOIN0S RIECT WO
USN01 Ysagal Aranngo
30T IR WO opoossed
JOSTH PUE SPOT SE000R
Ty S04 QAIREY

&

9ee

2055
o1 aoptacad vonmmdde
HIOI] SIN0S Blep

Jop ofted WSO YRy O DUSK

&

20813 04 apianad
uongondde 1e sonbos
UOUROLUSHINE CAIDI0Y

AN

US 9,231,764 B2

Sheet 4 of 16

Jan. 5§, 2016

U.S. Patent

AR B SIPOd IRy
saoaddy

Vs

SHA /

= ~
/ Pas
1Epiacid 901ATS 01 U0 Bpianid uonesdds
YSDY D PUE SSI008 prag T L0 OGS IRy DAY
R .//!l: -
, 083
9us

PO PNY Wi piaosd
nonedydde 5oy vononsE M
UTORHPME BT PUSY 007

- / T
Rhtelelslsd

ar0sddy v 952
N S

234

APOI SO0V Y M
yeenbos mE0] SO 2A1208Y

H AT

;ﬁ%&;i;f.

)
0
3

US 9,231,764 B2

Sheet 5 of 16

Jan. 5, 2016

U.S. Patent

o old

poe
7~ BER BINDE D) A0 FESMOIG 100 T i
Emm_xeu.ﬁﬁgiucmmﬁmha“w».;

sysanag usnkatgns 4oy
SOMHEA YINED Y SN0 UL

228

LN E] o cogot
UBNOT USRI PUE SSRTNY WANTRY (Bpozased + UBDL 45a4es)

paidAioue yum asucdsal NOST uiImay
=18
URA0T YSO4SY PUE 55300y g 3
A] 4 % 4 w TN UDYOY Y54 WRIHO OF 9Le
. JC§ P03 Yiny STueong o
sponssed B + 3000 YINY 1504 ud
7 M ™
it 00T HINY YU SOeGaM O] JB5N 10SHDSY
m
) S50y WINY O aaosddy pue vidn Zig
= . - K :
UET < ; 4
Ote B8O IR FR0S SIB0 4 1388PRY
a0

UDERINUSYITY S160]

a\\\ E{‘fs

BaSMOaY
SHALLH
Padi
fél. z..\\\s\\\\\\\\\\\\f

~
e POE AL

“uniyeuyse)

m;, @2in0§ L3eq

US 9,231,764 B2

Sheet 6 of 16

Jan. 5, 2016

U.S. Patent

Yy Ol

ABSAMIIG TN LH

JO @Se;015 e

241 pue {3 901q 8

{Thdaas

1 {pn) segnuen As

PEIdALUS BY) BIOIS

% SiEAL w,

o
—
=5

o,

i parseual Ay vondadsua oy Susn
01 dens wiosy gog e sunidAnug (s
Aoy oy o {p f2p) onbiun ue
LI DSRGRIRE 1E30] W1 A 2yt 24015 pue
{3} Aoy uendainua anbiun e melousg {7

1431 paidAnus

o

{pit} ssunusp

snbiun {9 pue () dais ut psssaus

E}
{2y 25u0dsad NG

{3 gom
Sf WMy

{d} apr praodd s oy pue (K1) eI oW
FUILISTUCD GO ST POINIINIS 2 21830 {1

&

upnesyddy

FOF

uondA s 1o Bads
mﬁEA%Jto%@o_mﬁmcmawﬁm

2 dnNISs 014357 NSY e

€4
i
=

1504

LR T

e

STGAMOIG
SHALLH
peds

P

g ppi A1 SIS

aBriots A2SMCUG

ALT UL ABENTIS PIUD]S
B eut (G 21e sMeIny

AV Y

jda]
o
i

US 9,231,764 B2

Sheet 7 of 16

Jan. 5, 2016

U.S. Patent

SHOEYIE O3 4G
1usassd 01 SFeI01s [220) W Saniie) syl 30 yrisue

1 upip spoassed i IUBHD 33 01)0Rg () f1Bp
pa1dALiag syl org Wnlss seymew sposssed 4y

PAes e spodssed

popiacid 1350 343 PUR §OJG 1421 peldisnep syl
i BRIOES {d) 2RODssed 2yl 1EYL 218RHBA i€
w215 snoinas U punoy Ay

oy Buisn {G3) piep pexdisue sy adioeg iy
LB AG
1HAT (P ASUNUSP] ASY Syl UQ PESEy 88eL0ls

12308 oy Wos (4 Asy uondAnus syl Aten (T

gy Ol

el

332605

1 usHD 2y 01 30eg (G) g1ep jpwdlio oy wniay

SETRE: o
uoneaddy

(]
N
5

(or) a3 sy anbian Ay uopdiangg (o
LiBiRE peings {G3) eieg peadAsug {g ‘epodssad papiaoud
Jasny ie wwondAsnep 10) JBALaS 0] FUIMOHC] BYT 1804

2.

SoRA0LG

Y1 303803 paannas dundAsap anj

{d} Spnossed Sy} JSIUB 01 43511 NSY

i
Aprirrrirresssieies s s

US 9,231,764 B2

Sheet 8 of 16

Jan. 5, 2016

U.S. Patent

-

aY Ol

FISAMOI GTNEH
30 232101S [EO0) U P} ABLIURD
Aay ajeand 3yl pue {133} 4

oG X3t pedAnun syl ol

{7} sdals ui pajesausd Asy uondiious syl Buisn PG

Jaagns uonesdde .
U p2d0Is Ay saeaud 843 a0 {pid) JRunuRp;
anbiun (g pue {¢} dats w petedsus3 {Q3) quil
Biel pagdAdous {7 s asuodsss NOST HIIBY

{11 9315 Wody QoG B sy sdhisug {g
A EE] OL (PN} SdpuRp ue e
YhiAn ASRGEIED [2I0] W1 ARy By 28015 pug ¢
{41 Aay uondAunus enbiun g s18uBUsS {7 viv

{d} spoissed papacsd
Fa5N 2l pue Q) UeNO L YSRUERY
FUrEI00 GO 1) PRININGS £ 31838 {1

uodAnus J0) J3AI8S 311 03 {d]
BPOICTRG SY] PUE () UBYD YSTHTY 1504

sdeenis
IEs F0) aponssed
",
2 drgas 01 49

2,
o,

3
4
H
3
#
H
%
i
4
4
3
i
i
%
4
¥
4
4

RORRIPEEIAPA

IBALIDG
uonenddy ./

FO¥

o]
=T

L)
=3
%

{41 BRODSSE o AY] 5I3UR 4250

errarssrren,

JEEM0NG

oy

US 9,231,764 B2

Sheet 9 of 16

Jan. 5, 2016

U.S. Patent

"SI G040 BINK susABad 0] SHRIMS {0 Ul
BENHEL BY B0y YOIE UL Lupp spoassed 3 D

By3 01 ¥0eq {1} usyo L yseiuey paishnsp (T

3 0BG WINLaL ‘SayoLR apoossed | {p
BuRs 36 apanesed
popiacad 1951 SYI pUR GOIG 1133 potdADRp S
W 0I5 {4) oporssad By138Y3 S1RpHEA {8
“dags snoirsid S W puno)
Ay @) Buisn {43} 21ep pagdalsua syl 1dAnag |
BT AY
DS {PIy] IS1IISPE A By UT pRsEY
2322018 1230] 243 Woay (N} Ax ucndAnus sz AanD {1

ady "old

RO UBEA]EY MBU B RINC OF UDY0] Sy BINYD
S BN UED IUSHT DIRSI0STS WORES A 2poassed
HIUDID SU1 01 %oeg () UDO} SRRy S1 uiniay

P —

i
8
:
£
H
£

iBAIAS

paicis {an) eieq pardArsug {0 ‘oponssed papiaosd

aasry iw ALop 303 J0As55 63 MDD O43 1504

BHRIOS FBSMOUG UL PII0IS (O3 UMDY
s pandAssus syl 1diineg

O1 {d} SPOISSEY DY 2D QY
Jesnyse 'youne) uonesydde ud

gl

RE2

A
SHNAH
PEd

(i

%
2
i
Z
b
i
i
i
4
i
Z
i
:
i
4
4
i
:
i
i
4
i
4
i
:
i
i
2

:
¢

43 8pnussey
Y3 S433UB 3N

0%

U.S. Patent Jan. 5,2016 Sheet 10 of 16 US 9,231,764 B2

FIG. 5A

502 508

Carrier 5:53 PM

\E

User Name \
[admin@akhilesh.com

(J Remember User Name

Forgot your password?

L~

[Previous] Next |

DEnENE0DDRE
| NEIE

U.S. Patent Jan. 5,2016 Sheet 11 of 16 US 9,231,764 B2

FIG. 5B

552 556 554

parrier?? 100% I

N

\Setup Passcode

T

1 3

4 6

7 9

Cancel Delete
AN

U.S. Patent Jan. 5,2016 Sheet 12 of 16 US 9,231,764 B2

FIG. 5C

572 576 574

Carrier ®

\Setup Passcode

T

3

6

9

Delete
\

US 9,231,764 B2

Sheet 13 of 16

Jan. 5, 2016

U.S. Patent

F4%9)
WEIRAG
Brte

iy
SO ALY

9 "Oid

(25
SEICAIBN

SGeLSI
MIAITP

SoRdS S804

bvd

. {28

= LEISAG

SPOD
wieibnig

478 ~

JOSHal0I4

(L0
R
P oereg
| wEsAg

¥24

UBGRB)
uonEanddy

9~

afimiog
[SYeTe
wBus |

US 9,231,764 B2

Sheet 14 of 16

Jan. 5, 2016

U.S. Patent

FANOE

Uais Q4Le
LBIBAS wsyshsy
nding widug

H210 Y18
LUBIBAT LelRAT
Aty 1 0esedo

L9

Z o
-
$10 FASS]
MICABN
34
TUERALITHALT
) IBAET
B L >
(002 -] eldy ooy
o~ ha™
o - ~ en
o o
- e
Qe i CT L idY
o giy
raY ..iu!!.WMwM e,
nmmﬂmw LT Mwmuom el
Zcmn&&& o Mﬁ_m&:ﬂw ; Eug,mma J2R3d
+ " SN L o -
0%/ SOURTON
. ;
mmmmw Bid b
. eoudy e8500 GE ELBUaS
GLE SHRIGI s et 884 e i
N REuEpy MBUS | EETS
s soneoddy

ElsR T

ghs ElBCEIely uoiEnKdy
Fidl BRI UBLS

soRdS JUBLUB L |

US 9,231,764 B2

Sheet 15 of 16

Jan. 5, 2016

U.S. Patent

P

o0

g Old

gty
SROLBIAN
13TeTR¥cea tEEY

3

g
2IRC IBUSL O
el v1ed ppy

4

I8 Beg
Wiy peodn

!

7iH 8085000id
TUBUS | Sl

¢

LT unoosy
LsHORIS]

US 9,231,764 B2

Sheet 16 of 16

Jan. 5, 2016

U.S. Patent

[ex

6 ol

&

SROUIBIY
Bunuswsdig
10} SUBMOD HEISU

)

BOE somien o
LWiBISAL SSROEIRG
BUS | OBLUOD

%

S
SHOMIBN O LIBISAG
JSEM ID8ULIOT

204
LUBISAT 6EBURIRE]
ILBUS | SRUSSSY

&

TEE wesig
1SS BILBNY

US 9,231,764 B2

1
METHODS AND SYSTEMS OF DATA
SECURITY IN BROWSER STORAGE

CLAIM OF PRIORITY

This continuation application is related to, and claims pri-
ority to, U.S. patent application Ser. No. 13/433,067, filed on
Mar. 28, 2012, the entire contents of which are incorporated
herein by reference; and is further related to, and claims
priority to U.S. Provisional Patent Application No. 61/528,
462, filed on Aug. 29, 2011, the entire contents of which are
incorporated herein by reference.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever

TECHNICAL FIELD

Embodiments of the invention relate generally to the field
of computing, and more particularly, to computer security.

BACKGROUND

The subject matter discussed in the background section
should not be assumed to be prior art merely as a result of its
mention in the background section. Similarly, a problem
mentioned in the background section or associated with the
subject matter of the background section should not be
assumed to have been previously recognized in the prior art.
The subject matter in the background section merely repre-
sents different approaches, which in and of themselves may
also be inventions.

Open Authorization (OAuth) is an open standard for pro-
viding third party access to a resource. OAuth provides a
method for clients to access server resources on behalf of a
resource owner (such as a different client or an end-user).
OAuth provides a process for end-users to authorize third-
party access to the end-user’s server resources, without shar-
ing the end-user’s credentials (typically, a username and pass-
word pair), by using user-agent redirections. OAuth allows
users to hand out tokens instead of credentials to their data
hosted by a given service provider. Each token may grant
access to a specific site for specific resources and for a defined
duration, which allows a user to grant a third party site access
to their information stored with another service provider,
without sharing their access permissions or the full extent of
their data.

The widespread use of the Internet, as well as the global-
ization of business opportunities has presented the need to
provide information sharing and controlled access between
network resources. Accordingly, the present application rec-
ognizes that it may be desirable to provide techniques for
extending the flow of authentication to the storage available
with current browsers, in order to better secure information
used for accessing and sharing network resources.

BRIEF DESCRIPTION OF THE DRAWINGS

In the following drawings like reference numbers are used
to refer to like elements. Although the following figures

10

15

20

25

30

35

40

45

50

55

60

65

2

depict various examples, the one or more implementations
are not limited to the examples depicted in the figures.

FIG. 1 shows a block diagram of an embodiment of a
network based system demonstrating the interaction between
a user system, an application server, and a third party data
server;

FIG. 2A shows a flowchart of an embodiment of a user
system method for initiating an OAuth session and obtaining
and storing an encrypted token in the user system browser;

FIG. 2B shows a flowchart of an embodiment of an appli-
cation provider side method for conducting an OAuth ses-
sion;

FIG. 2C shows a flowchart of an embodiment of a data
source side method for conducting an OAuth session;

FIG. 3 is an embodiment of a graphical flow representation
of the interaction between the user system, application pro-
vider, and data source of the flowcharts of FIGS. 2A-2C;

FIG. 4A is an embodiment of a graphical flow representa-
tion between a user system browser and an application pro-
vider/server illustrating local data storage on the user system
browser;

FIG. 4B is an embodiment of a graphical flow representa-
tion between the user system browser of FIG. 4A and the
application provider/server illustrating the use of the
encrypted data stored on the user system browser;

FIG. 4C is an embodiment of a graphical flow representa-
tion between the user system browser and the application
provider/server, similar to FIG. 4A, but illustrating the secure
storage of an OAuth refresh token on the user system browser;

FIG. 4D is an embodiment of a graphical flow representa-
tion between the user system browser of FIG. 4C and the
application provider/server illustrating obtaining the refresh
token in response to receiving the encrypted data stored on the
user system browser, similar to FIG. 4B, but using OAuth;

FIGS. 5A-5C are screenshots of an embodiment of a user
system display illustrating settings and using a passcode to
decrypt a locally stored OAuth refresh token;

FIG. 6 shows a block diagram of an embodiment of an
environment where an on-demand database service might be
used for methods and systems for managing OAuth access
between user systems, application provider servers, and third
party data stored in a multi-tenant database system;

FIG. 7 shows a block diagram of an embodiment of ele-
ments of FIG. 6 and various possible interconnections
between elements in an embodiment for methods and systems
for managing OAuth access between user systems, applica-
tion provider servers, and third party data stored in a multi-
tenant database system;

FIG. 8 shows a flowchart of an example of an embodiment
of'a method for using the environment of FIG. 6; and

FIG. 9 shows a flowchart of an example of an embodiment
of'a method of making the environment of FIG. 6.

DETAILED DESCRIPTION

General Overview

Systems and methods are provided for managing OAuth
access in a database network system, and extending the
OAuth flow of authentication to securely store the OAuth
refresh token in the storage available with browsers. Note that
although various implementations are described in the con-
text of a multi-tenant database network system (or multi-
tenant database system), these and other implementations
may also be utilized in other environments as well, for
example, on-demand service environments, LAN systems,
WAN systems, database systems, etc.

US 9,231,764 B2

3

Although various embodiments of the invention may have
been motivated by various deficiencies with the prior art,
which may be discussed or alluded to in one or more places in
the specification, the embodiments of the invention do not
necessarily address any of these deficiencies. In other words,
different embodiments of the invention may address different
deficiencies that may be discussed in the specification. Some
embodiments may only partially address some deficiencies or
just one deficiency that may be discussed in the specification,
and some embodiments may not address any of these defi-
ciencies.

As used herein, the term multi-tenant database system
refers to a database system that has multiple tenants that each
has a degree of access to at least a portion of the database
system that may or may not be the same as the degree of
access as other tenants. Each tenant may be an individual or
an organization that may have representatives, members,
employees, customers and/or other entities associated with
the tenant, which in turn, as a result of the tenancy of the
tenant in the multitenant database, may also have different
degrees of access to the database. The degree of access
granted to those associated with the tenant and/or which
entities (e.g., representatives, members, employees, custom-
ers and/or other entities) are associated with the tenant may be
determined by the tenant. The database system may include
multiple databases, and each database may be partitioned
and/or otherwise shared amongst multiple tenants. The mul-
titenant database may be provided on demand, that is as a
service to the tenants, so that the tenants have use of the
multitenant database for their own purposes that determined
by the tenants, but the tenants do not need to worry about the
maintaining the database, the operations of the database, or
how the database works.

Embodiments provide a modification of the OAuth flow of
authentication to securely store the OAuth refresh token des-
ignated for a user in the storage available with browsers on a
user device. OAuth based authentication flows return a
refresh token in response to a user initiated access session.
The refresh token may be securely stored by a client site and
by the user to easily and quickly access the third party ser-
vices. However, storage features available with browsers on
user systems lack encryption features or access to a device
key-chain. The device key-chain refers to the chain of keys
used for authentication. The absence or lack of security
encryption features, for encrypting access tokens in device
browsers, makes it easier for an undesired party to read use
the data stored on browser devices, such as the access refresh
tokens.

Embodiments may securely store the OAuth refresh token
designated for a user in the storage available with browsers on
auser access device that may be implemented within a system
environment. The system environment may include a com-
munication and/or computing device client browser, a service
provider (SP)/Web application (app) host, and an identity
provider/data source identity provider (the SP’s host system
may be referred to as the SP). Throughout this specification
the term “host,” “server,” and “provider” may be substituted
one for another to obtain different embodiments. Throughout
this specification the terms “web application host,” “applica-
tion host,” and “application server” may be substituted one
for another to obtain different embodiments. Throughout this
specification the terms “identity provider,” “third party
server,” “information provider,” and “data source” may be
substituted one for another to obtain different embodiments.
The SP may contact the identity provider in response to a user
(client) initiated session to obtain data or content.

20

25

30

40

45

4

In at least one embodiment, when a user authenticates, via
anidentity provider, and grants permission for an SP to access
the data and services of the identity provider, the identity
provider redirects the user/client browser to an endpoint pro-
vided by the SP. During this redirect, the identity provider
sends the authorization code, which can be exchanged by the
SP for access and refresh tokens. When the client browser
establishes communications with the SP endpoint, the SP
prompts the user to set-up a passcode before obtaining the
tokens. Once the user provides the passcode, and after the SP
obtains the tokens from the identity provider, the SP encrypts
the refresh token by using the user provided passcodes and/or
by a private key generated by the SP. The encrypted result
may also include a unique identifier that tracks future authen-
tication requests, and acts to prevent brute force hacks char-
acterized by repeated login attempts by an unauthorized
party. The encrypted token is then returned to the client
browser to be saved locally in the local storage of the browser.
During future access attempts, the client browser may send
this encrypted token along with the passcode to the SP to
access the data and services of the identity provider.

Advantages provided by at least one embodiment of the
modified OAuth are that the encryption and storage of the
refresh token on the user device obviates the need for the user
to authenticate via an identity provider every time the user
employs the application. The browser storage may be used to
store some or all the sensitive information on the client side,
and hence reduce the risks on the SP side from the impact of
having to store any sensitive user information. In general,
throughout this specification, the browser local storage area
may be a database and the Service Provider (SP) database
may be replaced with another storage area at the SP. The
modified OAuth may provide enhanced data security,
because, in an instance of a lost user device, the token cannot
be decrypted without manually inputting the user’s passcode
whenever a request for access is initiated, and the SP can
prevent brute force attacks to guess the user’s passcode. An
instance of unauthorized access to an encrypted token at the
user device would not be a cause of concern, since decryption
of the token occurs on the SP side and the decryption key is
stored as the SP.

FIG. 1 shows an embodiment of a network based system
100 demonstrating the interaction between an service pro-
vider server, an identity provider server, and a user system.
Network based system 100 may include network 102, service
provider server 104, key creation 106, application 108, iden-
tity provider server 110, OAuth software 112, token creation
module 114, database 116, user system 118, input device/
interface 120, browser 122, user interface 124, token storage
126, token management code 128, and network interface 130.
In other embodiments network based system 100 may not
have all of the elements or features listed and/or may have
other elements or features instead of or in addition to those
listed.

Application Server/User System

In network based system 100, the user system may allow
the application provider server to access information stored at
an identity provider server. The identity provider server may
store information on behalf of the end user. Network 102 is
any network, such as a Wide Area Network (WAN) or Local
Area Network (LAN), such as Internet or an intranet.

In an embodiment, service provider server 104 provides a
service or information to a user. Some non-limiting examples
of a service provided by service provider server 104 may be
photo printing of online digital photos or delivery of parcels.
As another example, the host of service provider server 104
may provide a service to the user. For example, on behalf of

US 9,231,764 B2

5

the user, the host of the service provider server 104 may
process the orders for products from customers for the users.
The printing service (service provider 104) may access the
photos (at identity provider server 110) in order to print the
photos, and the delivery service (service provider 104) may
access the server that stores the addresses (identity provider
server 110).

Encryption/decryption algorithm 106 decrypts encrypted
tokens, and encrypts tokens that have not yet been encrypted.
Encryption/decryption algorithm 106 encrypts tokens priorto
storing the encrypted token at the user machine and decrypts
encrypted tokens prior to using the token to gain access to the
identity provider server, allowing service provider server 104
to gain access to data on the identity provider server 110 on
behalf of the user. Applications 108 may be the services
provided by service provider server 104. Service provider
server 104 may host encryption algorithm 106 and applica-
tion 108. Both service provider server 104 and the user system
have a client server relationship with identity provider service
110 in which identity provider service 110 is the server and
service provider server 104 and the user system are the cli-
ents.

In an embodiment identity provider server 110 may pro-
vide content or data to be used by service provider server 104
on behalf of the user. Identity provider server 110 provides a
service, and the user allows service provider server 104 to
have access to identity provider server 110. Using photo-
printing as an example again, identity provider server 110
may provide the photos or images to be printed by a printing
application, which may be application 108 of the service
provider server 104. OAuth software 112 is a module that runs
the open authorization software, but could be replaced with
another authorization software. Alternatively, identity pro-
vider server 110 may provide a service ordered by service
provider server 104 to the user and/or to application provider
104 on behalf of the user. The OAuth software 112 manages
the authentication process, which will be described further
below. Token creation module 114 creates refresh tokens,
which may be necessary to access identity provider server
110. Database 116 may be a database that tracks the accounts
of users of identity provider server 110 and may be used by
identity provider server for other purposes as well. Identity
provider server 110 may host OAuth software 112, token
creation module 114, and database 116. Database 116 may
store the information, such as for example the photos that the
service provider server 104 is requesting. In an embodiment,
identity provider server 110 and/or database 116 may be part
of an on-demand multi-tenant database system. Database 116
may be a multi-tenant relational database having different
portions dedicated to different tenants. The identity provider
server 110 may be considered an organization (org) or tenant
in a multi-tenant database system to be described in greater
detail below in conjunction with FIGS. 6 and 7.

In an embodiment user system 118 may be a computing
device such as a desktop computer, laptop, tablet, or portable
computing device. User system 118 may also be a mobile
communication device such as a cellular phone or smart
phone. Anywhere in this specification where the word “sys-
tem” appears, the word “device” may be substituted to obtain
a more specific embodiment. User system 118 may be the
system of an end user that uses the services of service pro-
vider server 104 and identity provider server 110. User sys-
tem 118 may desire to have service provider server 104 per-
form a function for which service server provider 104 needs
to access the user’s account at identity provider server 110.
Input device 120 may be a keyboard, virtual keyboard, or a
pointing device, such as a tack ball, touch pad, touch screen,

10

15

20

25

30

35

40

45

50

55

60

65

6

oramouse. Browser 122 may be an application for interacting
with network resources over network 102. Browser 122 may
be any markup language client or any client capable of ren-
dering elements based on a markup language, such as an http
client. In an embodiment browser 122 may include a data-
base. In an embodiment, tokens may be stored in the local
storage of the browser, in nonvolatile memory. User interface
(UI) 124 may be a visual interactive webpage for inputting
and receiving information over the network 102. User inter-
face 124 may be a user interface that was downloaded from
service provider server 104. Token storage 126 may be a
storage area at the user system that stores tokens that were
created by identity provider server 110. Token storage 126
may be nonvolatile memory and may be part of the local
storage of the browser. Token storage 126 may store
encrypted tokens, which may be created by identity provider
server 126 and may be encrypted by service provider server
110. Token management code 128 controls the receipt, stor-
age, and release of tokens within user system 118. Token
management code 128 stores and manages tokens on user
system 118. Token management code 128 may be included
within browser 122. Network interface 130 is an interface to
a network that allows user system 118 to interface with a
network, such as the Internet. User system 118 may include
input system 120, browser 122, user interface 124, token
storage 126, token management code 128, and network inter-
face 130.
User System Side Method for Initiating OAuth Session and
Securing Encrypted Token on the User System Browser

FIG. 2A shows a flowchart of an embodiment of a user
system method 200 for initiating an OAuth session and
obtaining and storing an encrypted token in the user system
browser. In step 202, the user system sends an authentication
request to a service provider (SP), initiating authentication. In
step 204, the user system receives an OAuth login page for a
required data source/information provider (identity provider)
from the service provider redirecting the user to the identity
provider that has the data source. By sending the OAuth login
page of the identity provider from the service provider server,
the application provider redirects the user from the service
provider to the identity provider. In step 206, the user system
sends login information to the identity provider, and approves
OAuth access of the identity provider by the service provider.
In step 208, the user system receives an OAuth authorization
code from the identity provider (which may be a data source),
and an instruction to contact the SP redirecting the user back
to the SP. In step 210, the user system sends the OAuth
authorization code and user passcode to obtain the access
token and the refresh token from the SP, which the SP uses to
gain access to the identity provider (the access token is used
to obtain an initial access and the renew token is used to
refresh the session for subsequent requests for information).
In step 212, the user system receives an encrypted refresh
token based on the passcode from the SP (the refresh token
may be originally generated by the identity provider and sent
to the service provider). In step 214, the SP sets the session
cookies on the user system with OAuth tokens for subsequent
requests. The user system can also store the OAuth tokens in
other ways too and send the OAuth tokens back to SP in form
HTTPrequest headers or in the message body. In step 216, the
user system stores the encrypted token in the local storage of
the browser.

In an embodiment, each of the steps of method 200 may be
a distinct step. In other embodiments, method 200 may not
have all of the above steps and/or may have other steps in
addition to or instead of those listed above. The steps of
method 200 may be performed in another order. Subsets of

US 9,231,764 B2

7

the steps listed above as part of method 200 may be used to
form their own method. In an embodiment, there could be
multiple instances of method 200.
Application Provider (SP) Side Method or Conducting an
OAuth Session

FIG. 2B shows a flowchart of an embodiment of an appli-
cation provider side method 230 for conducting on OAuth
session. In step 232, the service provider (SP) receives an
authentication request from the user system. In step 234, the
SP sends an OAuth login page for a data source (identity
provider) to the user system, redirecting the user to the iden-
tity provider. In step 236, the SP receives a post OAuth access
code and a user passcode from the user for obtaining a refresh
token from the identity provider (which may be a data source)
(identity provider). In step 238, the SP sends the OAuth
access code and user passcode to obtain the access token and
refresh tokens from the identity provider. In step 240, the SP
receives the access and refresh tokens from the identity pro-
vider. In step 242, the SP sends a Javascript object notation
(JSON) response with an encrypted token (based on refresh
token+passcode). For example, the token and passcode may
be placed into a structured text BLOB, which may then be
encrypted. Alternatively, the passcode and token may be con-
catenated together. Alternatively, the passcode and refresh
token may be encrypted separately and then sent within a
structured text BLOB or sent separately. JSON is a light-
weight text-based open standard designed for human-read-
able data interchange. JSON is derived from the JavaScript
scripting language for representing simple data structures and
associative arrays, called objects. Despite JSONs relationship
to JavaScript, it is language-independent, are parsers avail-
able for most languages. Alternatively, another format may be
used for transmitting the access and refress tokens instead of
BON. For example, XML, text, and comma separated values
may be used instead of BON.

In an embodiment, each of the steps of method 230 may be
a distinct step. In other embodiments, method 230 may not
have all of the above steps and/or may have other steps in
addition to or instead of those listed above. The steps of
method 230 may be performed in another order. Subsets of
the steps listed above as part of method 230 may be used to
form their own method. In an embodiment, there may be
multiple instances of method 230.
Identity Provider Side Method for Conducting an OAuth
Session

FIG. 2C shows a flowchart of an embodiment of a data
source (which is identity provider) side method 250 for con-
ducting an OAuth session. In step 252, the data source/infor-
mation provider (which is identity provider) receives a user
login request with an authorization (Auth) access code. In
decision step 254, if the access based on the supplied Auth
code is denied method 250 follows the NO branch, and the
process ends in step 56. In decision step 254, if the access
based on the supplied Auth code is approved, method 250
follows the YES branch, and process 250 continues to step
258. In step 258, the identity provider sends the user system
redirection instructions to go to the application provider (SP)
with the supplied authorization code. In step 260, the identity
provider receives the authorization code from the service
provider. In decision step 262, if the access based on the
supplied auth code is denied method 250 follows the NO
branch, and the process ends in step 264. In decision step 262,
if the access based on the supplied authorization code is
approved, method 250 follows the YES branch, and process
250 continues to step 266. In step 266, the identity provider
sends the access and refresh token to service provider and the
process steps of method 250 conclude 268.

20

35

40

45

55

8

In an embodiment, each of the steps of method 250 may be
a distinct step. In other embodiments, method 250 may not
have all of the above steps and/or may have other steps in
addition to or instead of those listed above. The steps of
method 250 may be performed in another order. Subsets of
the steps listed above as part of method 250 may be used to
form their own method. In an embodiment, there may be
multiple instances of method 250.

FIG. 3 is a graphical flow representation 300 of an embodi-
ment illustrating the interaction between the user system 302,
application provider (SP) 304, and data source (identity pro-
vider) 306 that combines the steps of process 200, 230, and
250, which were described in the flowcharts of FIGS. 2A-2C
(in FIGS. 2A-5C “IP” stands for identity provider, whereas
elsewhere in the specification, such as in the discussion of
FIGS. 6 and 7, “IP” stands for internet protocol). User system
302 may be an embodiment of user system 118. Service
provider 304 may be an embodiment of service provider
server 104. Identity provider 306 may be an embodiment of
identity provider server 110. The user system 302 may be
running a browser utilizing hypertext markup language
(HTML), such as but not limited to HTMLS5, and may include
a browser that has a database. The flow representation 300
begins with step 308 in which the user system 302 initiates
authentication when contacting a Webapp (herein referred to
as an application provider/service provider (SP) 304. In step
310, in response to the user system 302, the SP 304 redirects
the user system 302 to the data source (identity provider) 306
for OAuth login. During the OAuth login, the user initiates a
session at identity provider 306. In step 312, in response to the
SP 304, the user system 302 logs into the identity provider
306 and provides an authorization (auth) code. In an embodi-
ment, the authorization code may be a token. In step 314, in
response to the user system 302 successfully logging into the
identity provider 306 with an accepted auth code, the identity
provider 306 redirects the user system 302 to contact the SP
304 with the auth code. In step 316, in response to the SP 304,
the user system 302 posts the auth code and a user passcode
made up of alphanumeric characters to obtain a refresh token.
Subsequently, in step 318, the SP 304 exchanges the supplied
authorization code to obtain access and refresh tokens from
the identity provider 306, which in an embodiment, may be
for the same session opened by the end user in step 310. SP
304 interacts as client with identity provider 306 as a client of
identity provider 306. In step 320, the identity provider 306,
in response to the SP 304, returns access and refresh tokens to
the SP 304. As part of step 320 or step 322, SP 304, encrypts
the combination of the refresh token and passcode. For
example, the refresh token and passcode may be placed into
structured text BLOB, which is then encrypted. In step 322,
the SP 304 then returns a JSON response with an encrypted
token based on the user supplied passcode combined with the
refresh token. In step 324, the browser of user system sets
session cookies with OAuth values for subsequent retrieval,
and stores the encrypted token in a browser.

In an embodiment, each of the steps of method 300 may be
a distinct step. In other embodiments, method 300 may not
have all of the above steps and/or may have other steps in
addition to or instead of those listed above. The steps of
method 300 may be performed in another order. Subsets of
the steps listed above as part of method 300 may be used to
form their own method. In an embodiment, there may be
multiple instances of method 300.

FIGS. 4A and 4B show an example of a method for storing
encrypted data on a browser, which may be used with
HTMLS5 or other browsers. FIG. 4A is an embodiment of a
graphical flow representation 400 between a user system 402

US 9,231,764 B2

9

browser and an application provider/server 404 illustrating
the storage of encrypted data on the user system 402 browser.
FIG. 4A is a method of storing encrypted data at a browser in
a user system. User system 402 may be an embodiment of
user system 118 and/or 302. Service provider server 404 may
be an embodiment of service provider server 104 and/or 304.
Identity provider 406 may be an embodiment of identity
provider server 110 and/or 306.

The flow representation 400 begins with step 406, in which
the user receives data that needs to be stored in the browser of
the user system, such as an encrypted refresh token for
accessing data on another server, such as the identity server.
In other embodiments, another authorization code or other
information may be stored at the browser instead. Step 406
has no exact analogue in FIG. 3. However, the encrypted data
of the method of FIG. 3, which is the authorization code, is
received as part of step 314.

In step 408, the user system 402 receives data (D) (e.g., the
refresh token) that is to be stored securely in the user system
browser storage. As part of step 408, in order to securely store
the data (D), the user is requested to setup a passcode (P) for
secure storage.

In step 410, in response to the request, the user enters the
passcode (P) into the user system 402. Subsequently, in step
412, the data (D) (e.g., the refresh token) and passcode (P) are
posted or sent to the service provider server (SP) for encryp-
tion.

In step 414, upon receiving the data (D) and passcode (P),
the service provider server 404 may perform the following
sub-steps. In sub-step (1), service provider server 404 creates
a structured text Binary Large Object (BLOB) (e.g., places
the data and the user passcode into to the structured text
BLOB, thereby creating a structured text BLOB) containing
the data (D) (e.g., the refresh token) and the user provided
passcode (P). In sub-step (2), service provider server 404
generates a unique encryption key (K), and stores thekeyina
local SP database with a unique identifier (Kid) assigned to
the key assuming that the encryption and decryption key are
the same (if the encryption and decryption key are different,
then the decryption key is stored at the SP database—or other
storage area—in association with key identifier Kid).

In sub-step (3), service provider server 404 encrypts the
text blob, which may be referred to as ED (Encrypted Data)
from sub-step (1) using the encryption key generated in step
2).

In an embodiment, a one-way hash is performed on only
the passcode before encrypting the passcode along with the
content or token (which may be plain text). So next time user
provides the passcode, the stored hash of the passcode is
compared with the new one-way hash of the provided pass-
code (instead of comparing the plain-text passcodes). In an
embodiment, the server only stores the encryption keys but
not the encrypted content. So the user sends the unencrypted
passcode and the encrypted object, to allow server to match
the passcodes, and if successful, the server returns the unen-
crypted content using the key stored at server. In an embodi-
ment, the passcode is not part of “content” but instead stored
along with content in the resulting encrypted object.

In step 416, the service provider server 404 subsequently
returns a structured response, such as JSON, XML etc., with
a) encrypted text blob (ED) generated in sub-step (3) of step
414 to the user system 402, and (b) returns the unique iden-
tifier for the private key (which may be referred to as the Key
identifier (Kid)) stored in the SP to the user system 402.

In step 418, the received encrypted text blob (ED) and the
private key identifier (Kid) are stored in local storage of the
user system 402 browser. Steps 408, 410, 412, and 418 of

30

35

40

45

10

FIG. 4A correspondto steps 310, 312,314, 316,322, and 324,
respectively, of FIG. 3. Step 414 corresponds to steps 318 and
320. The method of FIGS. 3 and 4 A differ in that in FIG. 3, the
encrypted data is received as part of the step 314, when the
user system is redirected to the webpage of the SP, which
occurs after being asked to set up a passcode in step 312,
whereas in the method of FIG. 4A, the user is asked to set the
passcode in step 410, which occurs after receiving the
encrypted data(D)/authorization code in step 406.

In an embodiment, each of the steps of method 400 may be
a distinct step. In other embodiments, method 400 may not
have all of the above steps and/or may have other steps in
addition to or instead of those listed above. The steps of
method 400 may be performed in another order. Subsets of
the steps listed above as part of method 400 may be used to
form their own method. In an embodiment, there may be
multiple instances of method 400.

FIG. 4B is an embodiment of a graphical flow representa-
tion 420 between the user system 402 of FIG. 4A and the
service provide server 404. FIG. 4A is method of using of the
encrypted data stored on the browser of the user system
(which may have been stored using the method 400 of FIG.
4A).

In step 422, the graphical flow representation 420 begins
with the user being prompted to enter the passcode (P), which
may have been created in FIG. 4A. The passcode may ulti-
mately beused by the service provider server 404 for decrypt-
ing encrypted content that is in the browser storage. In an
embodiment, the encrypted content may be a refresh token.
However, in other embodiments, the encrypted content may
be other encrypted content that service provider server 404
needs from user system 402 that is stored in the user system.
In an embodiment, the passcode is requested from the user
upon launching an application running on or provided by
service provider server 404. In other embodiments, the secure
content may not be needed immediately, and the passcode
may be requested at a later time.

Inresponse, in step 424, the user enters the passcode (P) on
the user system 402. Subsequently, in step 426, the following
are posted or sent by the user system 402 to the service
provider server 404 for performing the decryption: a) the user
provided passcode (P); b) encrypted data (ED) stored in FIG.
4A (e.g., the encrypted refresh token); and c¢) the encryption
key unique identifier (Kid).

In step 428, upon receiving the ED and Kid from the user
system 402, the service provider server 404 performs the
following sub-steps. In sub-step (1) the service provider
server 404 queries the encryption key (K) from the local
storage based on the key identifier (Kid) sent by the user (the
client). In other words, service provider server 404 performs
asearch (e.g., viaa query statement) in the local storage of the
browser of the user system for the encryption key, and the Kid
is used as the lookup value (e.g., database key) to locate the
encryption key. In sub-step (2) the service provider server 404
decrypts the encrypted data (ED) using the key found in step
1. In sub-step (3) the service provider server 404 validates that
the passcode (P) stored in the decrypted text blob (ED), and
the user provided passcode (P) are the same. In sub-step (4) if
the passcodes match in sub-step 3, the decrypted data (D) is
returned back to the user system 402 by the service provider
server 404, and if the passcodes do not match, a failure is
logged in local storage of the service provider server 404 to
prevent brute force attacks. For example, the SP may only
allow a predetermined particular number of failed attempts to
gain access, and if the log indicates that the predetermined
particular number of failed attempts is exceeded, the SP may
block access from that user whether or not the user later

US 9,231,764 B2

11

provides the correct passcode. In other words, the logging of
failure attempts can limit how many failures are allowed
before the decryption of that token is disabled and the system
determines to no longer accept the encryption keys. After the
system determines to no longer accept the encryption keys the
user would then have to re-authenticate and store new data
that’s encrypted with new private key.

Instep 430, optionally, after the service provider server 404
may receive updated data (e.g., an updated refresh token that
was obtained using the original refresh token), the updated
datais encrypted and is sent back to the user system 402 by the
service provider server 404 if the passcodes verification is
successful. As part of step 430, optionally, service provider
server 404 may make use of the encrypted data to provide a
service to the user system.

In an embodiment, each of the steps of method 420 may be
a distinct step. In other embodiments, method 420 may not
have all of the above steps and/or may have other steps in
addition to or instead of those listed above. The steps of
method 420 may be performed in another order. Subsets of
the steps listed above as part of method 420 may be used to
form their own method. In an embodiment, there may be
multiple instances of method 420.

FIG. 4C is an embodiment of a graphical flow representa-
tion 440 between the browser of user system 402 and the
application provider/service provider server 404, similar to
FIG. 4A, but illustrating the secure storage of an OAuth
refresh token on the user device browser. The graphical flow
representation 440 begins with the user system 402 receiving
an OAuth refresh token (D) that requires secure storage on the
user systems 402 browser (step 442), and the user being
prompted or asked to setup a passcode for secure storage (step
444). Subsequently, the user enters the passcode (P) (step
446) and posts or sends the refresh token (D) and the passcode
(P) to the application server (SP) for encryption (step 448).
Upon receiving the refresh token (D) and the passcode (P)
from the user system 402, the service provider server 404: 1)
creates a structured text blob containing the refresh token (D)
and the user provided passcode (P); 2) generates a unique
encryption key (K) and stores the key in a SP local database
with a unique identifier (Kid) assigned to the key; and 4)
encrypts the text blob from step (1) using the encryption key
generated in step (2) (step 450). The service provider server
404 subsequently returns a JSON response with a) encrypted
text blob (ED) generated in step (3) of step 450 to the user
system 402, and (b) returns the unique identifier (Kid) for the
private key stored in the service provider server 404 to the
user system 402 (step 452). The received encrypted text blob
(ED) and the private key identifier (Kid) are stored in local
storage of the user system 402 browser (step 454).

In an embodiment, each of the steps of method 440 may be
a distinct step. In other embodiments, method 440 may not
have all of the above steps and/or may have other steps in
addition to or instead of those listed above. The steps of
method 440 may be performed in another order. Subsets of
the steps listed above as part of method 440 may be used to
form their own method. In an embodiment, there may be
multiple instances of method 440.

FIG. 4D is an embodiment of a graphical flow representa-
tion 460 between the user system 402 browser of FIG. 4C and
the service provider server 404 illustrating obtaining the
refresh token in response to the encrypted data stored on the
user system 402 browser, similar to FIG. 4B, but using
OAuth. Flow representation begins 460 when the application
on service provider server 404 is started or requested by the
user, and the user is prompted to enter the passcode (P) to
decrypt the encrypted refresh token (ED) that has been

10

15

20

25

30

35

40

45

50

55

60

65

12

already stored in storage belonging to the browser (step 462).
In response, the user enters the passcode (P) (step 464), and
posts or sends the following to the SP for decryption: a) user
provided passcode (P); b) encrypted data (ED) stored earlier
as in FIG. 4C; and c) the encryption key unique identifier
(Kid) (step 466). Upon receiving the ED and Kid from the
user device 402, the service provider server 404: 1) queries
the encryption key (K) from the local storage based on the key
identifier (Kid) sent by the user (client); 2) decrypts the
encrypted data (ED) using the key found in step 1;3) validates
that the passcode (P) stored in the decrypted text blob (ED),
and the user provided passcode (P) are the same; and 4) if the
passcodes match in step 3, the decrypted data (D) is returned
back to the user system 402, if the passcodes do not match, a
failure is logged in local storage of the service provider server
404 to prevent brute force attacks (step 448). Subsequently,
the SP returns the refresh token (D) back to user system 402
client if the passcode verification was successful. The client
or user can use the OAuth refresh token to obtain a new
refresh token (step 470).

In an embodiment, each of the steps of method 460 may be
a distinct step. In other embodiments, method 460 may not
have all of the above steps and/or may have other steps in
addition to or instead of those listed above. The steps of
method 460 may be performed in another order. Subsets of
the steps listed above as part of method 460 may be used to
form their own method. In an embodiment, there may be
multiple instances of method 460.

In the embodiment of FIGS. 4A-D the token is decrypted
and the decrypted token is returned to the user, whereas in the
embodiment of FIG. 3, the token is used by the SP to access
information at the IP. In other embodiments, the decrypted
token may be sent elsewhere. In the embodiment of FIG. 4,
the encrypted tokens are decrypted on the application server
side.

In the embodiment of FIG. 3, after logging into the SP, the
user is redirected to provide the authorization code directly to
the IP, but in the embodiment of FIGS. 4A-D, after logging in,
the user is asked to provide a passcode without necessarily
being redirected to the IP. The embodiment of FIG. 3 may
include two parts: a) Standard OAuth, b) Standard OAuth+
Passcode flow. The embodiments of FIGS. 4A and C repre-
sents the part (b) of the embodiment of FIG. 3. Whereas, the
embodiment of FIGS. 4B and D show how the encrypted
tokens are decrypted later.

The user system uses the decrypted refresh token for sub-
sequent data requests via API from the identity provider sys-
tem. The user system may use the decrypted data in any way
the user wants. In an embodiment, the user does not store the
decrypted data locally for security reasons, only the
encrypted data is stored locally by the user system to prevent
the loss of data due to theft.

The embodiment of FIGS. 4A and B is a way to store the
data securely on the browser of the user system. The use of
OAuth is optional, but just a use case which may benefit from
the process of how the encrypted tokens are decrypted on the
application server side.

FIG. 5A is screen shot 500 of an embodiment of a webpage
for an initial login. Webpage 502 may include virtual key-
board 506, username field 508, password field 510, and login
button 512. In other embodiments, webpage 502 may not
have all of the elements listed and/or may have other elements
instead of or in addition to those listed.

Webpage 502 may used by the user for initially logging
into service provider’s website. Virtual keyboard 506 may be
used for entering the password and username in the appropri-
ate fields. Alternatively, the user may use a physical keyboard,

US 9,231,764 B2

13

if one is available. Username field 508 is the field into which
the user enters the username, which identifies the user to the
service provider. Password field 510 is a field for entering a
password for gaining access to the user’s account at the ser-
vice provider’s server. Login button 512 may be depressed to
send the password and user name for authentication. In the
embodiment, after the service provider authenticates the user-
name and password, the user is asked to provide a passcode
for decrypting stored content. In another embodiment, the
user may be redirected to the identity provider’s server for
logging in and approving access.

FIG. 5B is a screenshot 550 of an embodiment of a
webpage 552 for setting a passcode or for re-entering a pass-
code. Webpage 552 may include action identifier 554, pass-
code field 556, and virtual keyboard 558. In other embodi-
ments, webpage 552 may not have all of the elements listed
and/or may have other elements instead of or in addition to
those listed.

Afterlogin, a user or client receives an OAuth refresh token
that may require storage locally on the user device for future
use. The passcode which may be entered through the interface
webpage 552 is used, at least in part, to encrypt the refresh
token. The passcode may be setup once and reused in future
logins and authentication as will be shown in FIG. 5C, below.
Webpage 552 may include, action identifier 554 identifies the
action that is being performed, which, in screenshot 550 of
FIG. 5B, is setting up a passcode. Passcode field 556 is for
entering the passcode, which will be used encrypting the
refresh token and/or authentication. Virtual keyboard 558 is
an interactive portion of the display that has icons for buttons,
which may be used for entering the passcode. The portion of
the display having Virtual keyboard 558 may also display
information to a user for informing the user of which values
are acceptable values for use as characters of the passcode.
Although virtual keyboard 558 only includes the digits 1-9, in
other embodiments other symbols may be used instead and/or
in addition to the digits 1-9.

Webpage 552 may be used by the user for setting up a
passcode, which may be used for encrypting the stored
refresh token and for logging into service provider’s website.
Action identifier 554 informs the user of which information is
to be inputted, which in FIG. 5B is the passcode. Passcode
field 556 provides the user with a visual cue during entry of
the passcode. Virtual keyboard 558 may be used for entering
the passcode in the appropriate fields. Alternatively, the user
may use a physical keyboard, if one is available/desired.

FIG. 5C is a screen shot 570 of an embodiment of a
webpage 572 for entering a passcode. Webpage 572 may
include, action identifier 574, passcode field 576, and virtual
keyboard 578. In other embodiments, webpage 552 may not
have all of the elements listed and/or may have other elements
instead of or in addition to those listed.

Webpage 572 may be used by the user for entering a pass-
code, which may be used for decrypting the stored refresh
token and for logging into service provider’s website. When-
ever the user re-launches the application, the user is prompted
for the passcode (P) that was initially entered (as shown in
FIG. 5B) to decrypt the locally stored OAuth Refresh token.
Passcode field 576 and virtual keyboard 578 of FIG. 5C may
be the same as Passcode field 556 and virtual keyboard 558,
respectively. Action identifier 576 is similar to action identi-
fier 556, except that the action identified by action identifier
576 is entering a passcode (whereas the action identified for
action identifier 558 was setting up the passcode). In other
words, action identifier 574 informs the user of which infor-
mation is to be inputted, which in FIG. 5C is the passcode (as
set up in FIG. 5B).

10

15

20

25

30

35

40

45

50

55

60

65

14

System Overview

FIG. 6 illustrates a block diagram of an environment 610
wherein an on-demand database service might be used. Envi-
ronment 610 may include user systems 612, network 614,
system 616, processor system 617, application platform 66,
network interface 620, tenant data storage 622, system data
storage 624, program code 626, and process space 628. In
other embodiments, environment 610 may not have all of the
components listed and/or may have other elements instead of,
or in addition to, those listed above.

Environment 610 is an environment in which an on-de-
mand database service exists. User system 612 may be any
machine or system that is used by a user to access a database
user system. For example, any of user systems 612 may be a
handheld computing device, a mobile phone, a laptop com-
puter, a work station, and/or a network of computing devices.
As illustrated in FIG. 6 (and in more detail in FIG. 7) user
systems 612 might interact via a network 614 with an on-
demand database service, which is system 616.

An on-demand database service, such as system 616, is a
database system that is made available to outside users that do
not need to necessarily be concerned with building and/or
maintaining the database system, but instead may be available
for their use when the users need the database system (e.g., on
the demand of the users). Some on-demand database services
may store information from one or more tenants stored into
tables of a common database image to form a multi-tenant
database system (MTS). Accordingly, “on-demand database
service 616 and “system 616” will be used interchangeably
herein. A database image may include one or more database
objects. A relational database management system (RDMS)
or the equivalent may execute storage and retrieval of infor-
mation against the database object(s). Application platform
66 may be a framework that allows the applications of system
616 to run, such as the hardware and/or software, e.g., the
operating system. In an embodiment, on-demand database
service 616 may include an application platform 66 that
enables creation, managing and executing one or more appli-
cations developed by the provider of the on-demand database
service, users accessing the on-demand database service via
user systems 612, or third party application developers
accessing the on-demand database service via user systems
612.

The users of user systems 612 may differ in their respective
capacities, and the capacity of a particular user system 612
might be entirely determined by permissions (permission
levels) for the current user. For example, where a salesperson
is using a particular user system 612 to interact with system
616 that user system has the capacities allotted to that sales-
person. However, while an administrator is using that user
system to interact with system 616, that user system has the
capacities allotted to that administrator. In systems with a
hierarchical role model, users at one permission level may
have access to applications, data, and database information
accessible by a lower permission level user, but may not have
access to certain applications, database information, and data
accessible by a user at a higher permission level. Thus, dif-
ferent users will have different capabilities with regard to
accessing and modifying application and database informa-
tion, depending on a user’s security or permission level.

Network 614 is any network or combination of networks of
devices that communicate with one another. For example,
network 614 may be anyone or any combination of a LAN
(local area network), WAN (wide area network), telephone
network, wireless network, point-to-point network, star net-
work, token ring network, hub network, or other appropriate
configuration. As the most common type of computer net-

US 9,231,764 B2

15

work in current use is a TCP/IP (Transter Control Protocol
and Internet Protocol) network, such as the global internet-
work of networks often referred to as the “Internet” with a
capital “1,” that network will be used in many of the examples
herein. However, it should be understood that the networks
that the one or more implementations might use are not so
limited, although TCP/IP is a frequently implemented proto-
col.

User systems 612 might communicate with system 616
using TCP/IP and, at a higher network level, use other com-
mon Internet protocols to communicate, such as HTTP,
HTTPS, FTP, AFS, WAP, etc. In an example where HTTP is
used, user system 612 might include an HTTP client com-
monly referred to as a “browser” for sending and receiving
HTTP messages to and from an HTTP server at system 616.
Such an HTTP server might be implemented as the sole
network interface between system 616 and network 614, but
other techniques might be used as well or instead. In some
implementations, the interface between system 616 and net-
work 614 includes load sharing functionality, such as round-
robin HTTP request distributors to balance loads and distrib-
ute incoming HTTP requests evenly over a plurality of
servers. At least as for the users that are accessing that server,
each of the plurality of servers has access to the MTS’ data;
however, other alternative configurations may be used
instead.

In one embodiment, system 616, shown in FIG. 6, imple-
ments a web-based customer relationship management
(CRM) system. For example, in one embodiment, system 616
includes application servers configured to implement and
execute CRM software applications as well as provide related
data, code, forms, webpages and other information to and
from user systems 612 and to store to, and retrieve from, a
database system related data, objects, and Webpage content.
With a multi-tenant system, data for multiple tenants may be
stored in the same physical database object, however, tenant
data typically is arranged so that data of one tenant is kept
logically separate from that of other tenants so that one tenant
does not have access to another tenant’s data, unless such data
is expressly shared. In certain embodiments, system 616
implements applications other than, or in addition to, a CRM
application. For example, system 616 may provide tenant
access to multiple hosted (standard and custom) applications,
including a CRM application. User (or third party developer)
applications, which mayor may not include CRM, may be
supported by the application platform 66, which manages
creation, storage of the applications into one or more database
objects and executing of the applications in a virtual machine
in the process space of the system 616.

One arrangement for elements of system 616 is shown in
FIG. 6, including a network interface 620, application plat-
form 66, tenant data storage 622 for tenant data 1923, system
data storage 624 for system data 625 accessible to system 616
and possibly multiple tenants, program code 626 for imple-
menting various functions of system 616, and a process space
628 for executing MTS system processes and tenant-specific
processes, such as running applications as part of an applica-
tion hosting service. Additional processes that may execute
on system 616 include database indexing processes.

Several elements in the system shown in FIG. 6 include
conventional, well known elements that are explained only
briefly here. For example, each user system 612 could include
a desktop personal computer, workstation, laptop, PDA, cell
phone, or any wireless access protocol (W AP) enabled device
or any other computing device capable of interfacing directly
or indirectly to the Internet or other network connection. User
system 612 typically runs an HTTP client, e.g., a browsing

20

25

35

40

45

50

55

16

program, such as Microsoft’s Internet Explorer browser,
Netscape’s Navigator browser, Opera’s browser, or a WAP-
enabled browser in the case of a cell phone, PDA or other
wireless device, or the like, allowing a user (e.g., subscriber of
the multi-tenant database system) of user system 612 to
access, process and view information, pages and applications
available to it from system 616 over network 614. Each user
system 612 also typically includes one or more user interface
devices, such as a keyboard, a mouse, trackball, touch pad,
touch screen, pen or the like, for interacting with a graphical
user interface (GUI) provided by the browser on a display
(e.g., amonitor screen, LCD display, etc.) in conjunction with
pages, forms, applications and other information provided by
system 616 or other systems or servers. For example, the user
interface device may be used to access data and applications
hosted by system 616, and to perform searches on stored data,
and otherwise allow a user to interact with various GUI pages
that may be presented to a user. As discussed above, embodi-
ments are suitable for use with the Internet, which refers to a
specific global internetwork of networks. However, it should
be understood that other networks may be used instead of the
Internet, such as an intranet, an extranet, a virtual private
network (VPN), a non-TCP/IP based network, any LAN or
WAN or the like.

According to one embodiment, each user system 612 and
all of its components are operator configurable using appli-
cations, such as a browser, including computer code run using
a central processing unit such as an Intel Pentium® processor
orthe like. Similarly, system 616 (and additional instances of
an MTS, where more than one is present) and all of their
components might be operator configurable using application
(s) including computer code to run using a central processing
unit such as processor system 617, which may include an Intel
Pentium® processor or the like, and/or multiple processor
units. A computer program product embodiment includes a
machine-readable storage medium (media) having instruc-
tions stored thereon/in which may be used to program a
computer to perform any of the processes of the embodiments
described herein. Computer code for operating and configur-
ing system 616 to intercommunicate and to process
webpages, applications and other data and media content as
described herein are preferably downloaded and stored on a
hard disk, but the entire program code, or portions thereof,
may also be stored in any other volatile or non-volatile
memory medium or device as is well known, such as a ROM
or RAM, or provided on any media capable of storing pro-
gram code, such as any type of rotating media including
floppy disks, optical discs, digital versatile disk (DVD), com-
pact disk (CD), microdrive, and magneto-optical disks, and
magnetic or optical cards, nanosystems (including molecular
memory ICs), or any type of media or device suitable for
storing instructions and/or data. Additionally, the entire pro-
gram code, or portions thereof, may be transmitted and down-
loaded from a software source over a transmission medium,
e.g., over the Internet, or from another server, as is well
known, or transmitted over any other conventional network
connection as is well known (e.g., extranet, VPN, LAN; etc.)
using any communication medium and protocols (e.g., TCP/
1P, HTTP, HTTPS, Ethernet, etc.) as are well known. It will
also be appreciated that computer code for implementing
embodiments may be implemented in any programming lan-
guage that may be executed on a client system and/or server or
server system such as, forexample, C, C++, HTML, any other
markup language, Java™, JavaScript, ActiveX, any other
scripting language, such as VB Script, and many other pro-
gramming languages as are well known may be used. (Java™
is a trademark of Sun Microsystems, Inc.).

US 9,231,764 B2

17

According to one embodiment, each system 616 is config-
ured to provide webpages, forms, applications, data and
media content to user (client) systems 612 to support the
access by user systems 612 as tenants of system 616. As such,
system 616 provides security mechanisms to keep each ten-
ant’s data separate unless the data is shared. If more than one
MTS is used, they may be located in close proximity to one
another (e.g., in a server farm located in a single building or
campus), or they may be distributed at locations remote from
one another (e.g., one or more servers located in city A and
one or more servers located in city B). As used herein, each
MTS could include one or more logically and/or physically
connected servers distributed locally or across one or more
geographic locations. Additionally, the term “server” is
meant to include a computer system, including processing
hardware and process space(s), and an associated storage
system and database application (e.g., OODBMS or
RDBMS) as is well known in the art. It should also be under-
stood that “server system” and “server” are often used inter-
changeably herein. Similarly, the database object described
herein may be implemented as single databases, a distributed
database, a collection of distributed databases, a database
with redundant online or offline backups or other redundan-
cies, etc., and might include a distributed database or storage
network and associated processing intelligence.

FIG. 7 also illustrates environment 610. However, in FIG.
7 elements of system 616 and various interconnections in an
embodiment are further illustrated. FIG. 7 shows that user
system 612 may include processor system 612A, memory
system 612B, input system 612C, and output system 612D.
FIG. 6 shows network 614 and system 616. FIG. 7 also shows
that system 616 may include tenant data storage 622, tenant
data 623, system data storage 624, system data 625, User
Interface (UI) 730, Application Program Interface (API) 732,
PL/SOQL 734, save routines 736, application setup mecha-
nism 738, applications servers 700I-700N, system process
space 702, tenant process spaces 704, tenant management
process space 710, tenant storage area 712, user storage 714,
and application metadata 716. In other embodiments, envi-
ronment 610 may not have the same elements as those listed
above and/or may have other elements instead of, or in addi-
tion to, those listed above.

User system 612, network 614, system 616, tenant data
storage 622, and system data storage 624 were discussed
above in FIG. 6. Regarding user system 612, processor sys-
tem 612 A may be any combination of one or more processors.
Memory system 612B may be any combination of one or
more memory devices, short term, and/or long term memory.
Input system 612C may be any combination of input devices,
such as one or more keyboards, mice, trackballs, scanners,
cameras, and/or interfaces to networks. Output system 612D
may be any combination of output devices, such as one or
more monitors, printers, and/or interfaces to networks. As
shown by FIG. 6, system 616 may include a network interface
620 (of FIG. 6) implemented as a set of HTTP application
servers 700, an application platform 618, tenant data storage
622, and system data storage 624. Also shown is system
process space 702, including individual tenant process spaces
704 and a tenant management process space 710. Each appli-
cation server 700 may be configured to tenant data storage
622 and the tenant data 623 therein, and system data storage
624 and the system data 625 therein to serve requests of user
systems 612. The tenant data 623 might be divided into indi-
vidual tenant storage areas 712, which may be either a physi-
cal arrangement and/or a logical arrangement of data. Within
each tenant storage area 712, user storage 714 and application
metadata 716 might be similarly allocated for each user. For

10

15

20

25

30

35

40

45

50

55

60

65

18

example, a copy of a user’s most recently used (MRU) items
might be stored to user storage 714. Similarly, a copy of MRU
items for an entire organization that is a tenant might be stored
to tenant storage area 712. A UI 730 provides a user interface
and an API 732 provides an application programmer interface
to system 616 resident processes to users and/or developers at
user systems 612. The tenant data and the system data may be
stored in various databases, such as one or more Oracle™
databases.

Application platform 618 includes an application setup
mechanism 738 that supports application developers’ cre-
ation and management of applications, which may be saved as
metadata into tenant data storage 622 by save routines 736 for
execution by subscribers as one or more tenant process spaces
704 managed by tenant management process 710 for
example. Invocations to such applications may be coded
using PL/SOQL 734 that provides a programming language
style interface extension to AP1732. A detailed description of
some PL/SOQL language embodiments is discussed in com-
monly owned co-pending U.S. Provisional Patent Applica-
tion 60/828,192 entitled, PROGRAMMING LANGUAGE
METHOD AND SYSTEM FOR EXTENDING APIS TO
EXECUTE IN CONJUNCTION WITH DATABASE APIS,
by Craig Weissman, filed Oct. 4, 2006, which is incorporated
in its entirety herein for all purposes. Invocations to applica-
tions may be detected by one or more system processes,
which manage retrieving application metadata 716 for the
subscriber making the invocation and executing the metadata
as an application in a virtual machine.

Each application server 700 may be communicably
coupled to database systems, e.g., having access to system
data 625 and tenant data 623, via a different network connec-
tion. For example, one application server 7001 might be
coupled via the network 614 (e.g., the Internet), another appli-
cation server 700N-1 might be coupled via a direct network
link, and another application server 700N might be coupled
by yet a different network connection. Transfer Control Pro-
tocol and Internet Protocol (TCP/IP) are typical protocols for
communicating between application servers 1900 and the
database system. However, it will be apparent to one skilled in
the art that other transport protocols may be used to optimize
the system depending on the network interconnect used.

In certain embodiments, each application server 700 is
configured to handle requests for any user associated with any
organization that is a tenant. Because it is desirable to be able
to add and remove application servers from the server pool at
any time for any reason, there is preferably no server affinity
for a user and/or organization to a specific application server
700. In one embodiment, therefore, an interface system
implementing a load balancing function (e.g., an F5 Big-IP
load balancer) is communicably coupled between the appli-
cation servers 700 and the user systems 612 to distribute
requests to the application servers 700. In one embodiment,
the load balancer uses a least connections algorithm to route
user requests to the application servers 700. Other examples
of load balancing algorithms, such as round robin and
observed response time, also may be used. For example, in
certain embodiments, three consecutive requests from the
same user could hit three different application servers 700,
and three requests from different users could hit the same
application server 700. In this manner, system 616 is multi-
tenant, wherein system 616 handles storage of, and access to,
different objects, data and applications across disparate users
and organizations.

As an example of storage, one tenant might be a company
that employs a sales force where each salesperson uses sys-
tem 616 to manage their sales process. Thus, a user might

US 9,231,764 B2

19

maintain contact data, leads data, customer follow-up data,
performance data, goals and progress data, etc., all applicable
to that user’s personal sales process (e.g., in tenant data stor-
age 622). In an example of a MTS arrangement, since all of
the data and the applications to access, view, modify, report,
transmit, calculate, etc., may be maintained and accessed by
a user system having nothing more than network access, the
user may manage his or her sales efforts and cycles from any
of many different user systems. For example, if a salesperson
is visiting a customer and the customer has Internet access in
their lobby, the salesperson may obtain critical updates as to
that customer while waiting for the customer to arrive in the
lobby.

While each user’s data might be separate from other users’
data regardless of the employers of each user, some data
might be organization-wide data shared or accessible by a
plurality of users or all of the users for a given organization
that is a tenant. Thus, there might be some data structures
managed by system 616 that are allocated at the tenant level
while other data structures might be managed at the user level.
Because an MTS might support multiple tenants including
possible competitors, the MTS should have security protocols
that keep data, applications, and application use separate.
Also, because many tenants may opt for access to an MTS
rather than maintain their own system, redundancy, up-time,
and backup are additional functions that may be implemented
in the MTS. In addition to user-specific data and tenant spe-
cific data, system 616 might also maintain system level data
usable by multiple tenants or other data. Such system level
data might include industry reports, news, postings, and the
like that are sharable among tenants.

In certain embodiments, user systems 612 (which may be
client systems) communicate with application servers 700 to
request and update system-level and tenant-level data from
system 616 that may require sending one or more queries to
tenant data storage 622 and/or system data storage 624. Sys-
tem 616 (e.g., an application server 700 in system 616) auto-
matically generates one or more SQL statements (e.g., one or
more SQL queries) that are designed to access the desired
information. System data storage 624 may generate query
plans to access the requested data from the database.

Each database may generally be viewed as a collection of
objects, such as a set of logical tables, containing data fitted
into predefined categories. A “table” is one representation of
a data object, and may be used herein to simplify the concep-
tual description of objects and custom objects. It should be
understood that “table” and “object” may be used inter-
changeably herein. Each table generally contains one or more
data categories logically arranged as columns or fields in a
viewable schema. Each row or record of a table contains an
instance of data for each category defined by the fields. For
example, a CRM database may include a table that describes
a customer with fields for basic contact information such as
name, address, phone number, fax number, etc. Another table
might describe a purchase order, including fields for informa-
tion such as customer, product, sale price, date, etc. In some
multi-tenant database systems, standard entity tables might
be provided for use by all tenants. For CRM database appli-
cations, such standard entities might include tables for
Account, Contact, Lead, and Opportunity data, each contain-
ing pre-defined fields. It should be understood that the word
“entity” may also be used interchangeably herein with
“object” and “table”.

In some multi-tenant database systems, tenants may be
allowed to create and store custom objects, or they may be
allowed to customize standard entities or objects, for example
by creating custom fields for standard objects, including cus-

30

40

45

55

20

tom index fields. U.S. patent application Ser. No. 10/8128,
161, filed Apr. 2, 2004, entitled “Custom Entities and Fields in
a Multi-Tenant Database System”, and which is hereby incor-
porated herein by reference, teaches systems and methods for
creating custom objects as well as customizing standard
objects in a multi-tenant database system. In certain embodi-
ments, for example, all custom entity data rows are stored in
a single multi-tenant physical table, which may contain mul-
tiple logical tables per organization. It is transparent to cus-
tomers that their multiple “tables” are in fact stored in one
large table or that their data may be stored in the same table as
the data of other customers.

Method for Using the Environment (FIGS. 6 and 7)

FIG. 8 shows a flowchart of an example of a method 800 of
using environment 610. In step 810, user system 612 (FIGS.
6 and 7) establishes an account. In step 812, one or more
tenant process space 704 (FIG. 7) are initiated on behalf of
user system 612, which may also involve setting aside space
in tenant space 712 (FIG. 7) and tenant data 714 (FIG. 7) for
user system 612. Step 812 may also involve modifying appli-
cation metadata to accommodate user system 612. In step
814, user system 612 uploads data. In step 816, one or more
data objects are added to tenant data 714 where the data
uploaded is stored. In step 818, the methods associated with
FIGS. 6-7 may be implemented. In another embodiment,
although depicted as distinct steps in FIG. 8, steps 810-818
may not be distinct steps. In other embodiments, method 800
may not have all of the above steps and/or may have other
steps in addition to, or instead of, those listed above. The steps
of method 800 may be performed in another order. Subsets of
the steps listed above as part of method 800 may be used to
form their own method.

Method for Creating the Environment (FIGS. 6 and 7)

FIG. 9 is a method of making environment 610, in step 902,
user system 612 (FIGS. 6 and 7) is assembled, which may
include communicatively coupling one or more processors,
one or more memory devices, one or more input devices (e.g.,
one or more mice, keyboards, and/or scanners), one or more
output devices (e.g., one more printers, one or more interfaces
to networks, and/or one or more monitors) to one another.

In step 904, system 616 (FIGS. 6 and 7) is assembled,
which may include communicatively coupling one or more
processors, one or more memory devices, one or more input
devices (e.g., one or more mice, keyboards, and/or scanners),
one or more output devices (e.g., one more printers, one or
more interfaces to networks, and/or one or more monitors) to
one another. Additionally assembling system 616 may
include installing application platform 618, network interface
620, tenant data storage 622, system data storage 624, system
data 625, program code 626, process space 628, Ul 730, API
732, PL/SOQL 734, save routine 736, application setup
mechanism 738, applications servers 7001-700N, system pro-
cess space 702, tenant process spaces 704, tenant manage-
ment process space 710, tenant space 712, tenant data 714,
and application metadata 716 (FIG. 7).

Instep 906, user system 612 is communicatively coupled to
network 614. In Step 908, system 616 is communicatively
coupled to network 614 allowing user system 612 and system
616 to communicate with one another (FIG. 7). In step 910,
one or more instructions may be installed in system 616 (e.g.,
the instructions may be installed on one or more machine
readable media, such as computer readable media, therein)
and/or system 616 is otherwise configured for performing the
steps of methods associated with FIGS. 2-5. In an embodi-
ment, each of the steps of method 900 is a distinct step. In
another embodiment, although depicted as distinct steps in
FIG. 9, steps 902-910 may not be distinct steps. In other

US 9,231,764 B2

21

embodiments, method 900 may not have all of the above steps
and/or may have other steps in addition to, or instead of, those
listed above. The steps of method 900 may be performed in
another order. Subsets of the steps listed above as part of
method 900 may be used to form their own method.

While one or more implementations have been described
by way of example and in terms of the specific embodiments,
it is to be understood that one or more implementations are
not limited to the disclosed embodiments. To the contrary, it
is intended to cover various modifications and similar
arrangements as would be apparent to those skilled in the art.
Therefore, the scope of the appended claims should be
accorded the broadest interpretation so as to encompass all
such modifications and similar arrangements.

Extensions And Alternatives

In this specification anywhere a JSON is mentioned, XML,
a comma separated value file, text, or another format may be
used for storing the same data. Any place the structured text
BLOB is mentioned another data structure may be used
instead. Alternatively, instead of placing the passcode and
token into the structured text BLOB and then encrypting the
structured text BLOB, the passcode and token may be con-
catenated together and then encrypted, may be encrypted and
then placed into a structured text BLOB (or other data struc-
ture), or sent separately.

Each embodiment disclosed herein may be used or other-
wise combined with any of the other embodiments disclosed.
Any element of any embodiment may be used in any embodi-
ment.

Although the invention has been described with reference
to specific embodiments, it will be understood by those
skilled in the art that various changes may be made and
equivalents may be substituted for elements thereof without
departing from the true spirit and scope of the invention. In
addition, modifications may be made without departing from
the essential teachings of the invention.

What is claimed is:

1. A non-transitory computer-readable medium having
stored thereon instructions that, when executed by one or
more processors, cause the one or more processors to:

authenticate a client browser via an identity provider;

grant permission for an service to access data and/or ser-
vices of the identity provider;

redirect, with the identity provider, the client browser to an

endpoint provided by the service provider;

send an authorization code, with the identity provider, dur-

ing the redirect, the authorization code to be exchanged,
by the service provider, for one or more refresh tokens
and access to the data and/or services;

wherein the client browser establishes communications

with the service provider, the service provider prompts
the user to set-up a passcode before obtaining the tokens
and once the passcode is provided, and after the service
provider obtains the tokens from the identity provider,
the service provider encrypts the refresh token(s) by
using the passcode and/or by a private key generated by
the service provider; and

wherein the encrypted token is returned to the client

browser to be saved locally in local storage of the client
browser;

cause, during future attempts, the client browserto send the

encrypted token along with the passcode to the service
provider to access the data and/or services of the identity
provider.

2. The non-transitory computer-readable medium of claim
1 wherein the encrypted result further comprises a unique
identifier to track future authentication requests.

15

20

25

40

45

60

65

22

3. The non-transitory computer-readable medium of claim
1 wherein the service provider provides an on-demand ser-
vice environment.

4. The non-transitory computer-readable medium of claim
3 wherein the on-demand services environment comprises a
multitenant database system.

5. A method comprising:

authenticating a client browser via an identity provider;

granting permission for an service to access data and/or

services of the identity provider;

redirecting, with the identity provider, the client browser to

an endpoint provided by the service provider;
sending an authorization code, with the identity provider,
during the redirect, the authorization code to be
exchanged, by the service provider, for one or more
refresh tokens and access to the data and/or services;

wherein the client browser establishes communications
with the service provider, the service provider prompts
the user to set-up a passcode before obtaining the tokens
and once the passcode is provided, and after the service
provider obtains the tokens from the identity provider,
the service provider encrypts the refresh token(s) by
using the passcode and/or by a private key generated by
the service provider; and

wherein the encrypted token is returned to the client

browser to be saved locally in local storage of the client
browser;

causing, during future attempts, the client browser to send

the encrypted token along with the passcode to the ser-
vice provider to access the data and/or services of the
identity provider.

6. The method of claim 5 wherein the encrypted result
further comprises a unique identifier to track future authenti-
cation requests.

7. The method of claim 5 wherein the service provider
provides an on-demand service environment.

8. The method of claim 7 wherein the on-demand services
environment comprises a multitenant database system.

9. An apparatus having a processor and a memory, the
apparatus comprising:

means for authenticating a client browser via an identity

provider;

means for granting permission for an service to access data

and/or services of the identity provider;
means for redirecting, with the identity provider, the client
browser to an endpoint provided by the service provider;

means for sending an authorization code, with the identity
provider, during the redirect, the authorization code to
be exchanged, by the service provider, for one or more
refresh tokens and access to the data and/or services;

wherein the client browser establishes communications
with the service provider, the service provider prompts
the user to set-up a passcode before obtaining the tokens
and once the passcode is provided, and after the service
provider obtains the tokens from the identity provider,
the service provider encrypts the refresh token(s) by
using the passcode and/or by a private key generated by
the service provider; and

wherein the encrypted token is returned to the client

browser to be saved locally in local storage of the client
browser;

means for cousing, during future attempts, the client

browser to send the encrypted token along with the
passcode to the service provider to access the data and/or
services of the identity provider.

US 9,231,764 B2

23

10. The apparatus of claim 9 wherein the encrypted result

further comprises a unique identifier to track future authenti-
cation requests.

11. The apparatus of claim 9 wherein the service provider

provides an on-demand service environment.

12. The apparatus of claim 11 wherein the on-demand

services environment comprises a multitenant database sys-
tem.

13. A computer system comprising:

one or more processors communicatively coupled to each
other to authenticate a client browser via an identity
provider, to grant permission for an service to access
data and/or services of the identity provider, to redirect,
with the identity provider, the client browser to an end-
point provided by the service provider, and to send an
authorization code, with the identity provider, during the
redirect, the authorization code to be exchanged, by the
service provider, for one or more refresh tokens and
access to the data and/or services, wherein the client
browser establishes communications with the service

10

24

provider, the service provider prompts the user to set-up
a passcode before obtaining the tokens and once the
passcode is provided, and after the service provider
obtains the tokens from the identity provider, the service
provider encrypts the refresh token(s) by using the pass-
code and/or by a private key generated by the service
provider, wherein the encrypted token is returned to the
client browser to be saved locally in local storage of the
client browser, and to cause, during future attempts, the
client browser to send the encrypted token along with the
passcode to the service provider to access the data and/or
services of the identity provider.

14. The system of claim 13 wherein the encrypted result
further comprises a unique identifier to track future authenti-

15 cation requests.

15. The system of claim 13 wherein the service provider
provides an on-demand service environment.

16. The system of claim 15 wherein the on-demand ser-
vices environment comprises a multitenant database system.

#* #* #* #* #*

